• 最新公告
  • 联系我们
  • 地址:湖北武汉三环科技园
  • 电话:159116031100
  • 传真:027-68834628
  • 邮箱:mmheng@foxmail.com
  • 当前所在位置:首页 - 当地天气
  • 2017年六安市金安区事业单位行测数量关系解题技巧
  •   事业单位数量关系是必考的题型之一,数量关系中常考的题型有很多,考生都认为这是数学中困难的一门课,虽然存在一定的困难,但是有一些模型是可以掌握的,此篇重点行程问题中牛吃草问题。

      首先牛吃草问题又称为消涨问题,草在不断的生长且生长的速度固定不变,牛在不断吃草且每头牛每天吃的草量相同,供不同数量的牛吃,需要用不同的时间,给出牛的数量,求时间。

      (1)标准牛吃草问题,同一草场上的不同牛数的几种不同吃法,其中草的总量、每头牛每天吃草量和草每天的生长数量,三个量是不变的,这种题型较为简单,直接套用牛吃草问题公式即可。

      例如:牧草上有一片青青的草,每天牧草有匀速生长,这片牧草可供10头牛吃20天,或者可供15头吃10天,可供25头牛吃几天?

      解析:牛在吃草,草在匀速生长,所以是牛吃草问题中的追击问题,原有草量=(牛每天吃掉的草-每天生长的草)×,设每头牛每天吃的草量为1,每天生长的草量为X,可供25头牛吃T天,所以(10- X)20=(15-X)10=(25-X)T,先求出X=5,再求得T=5。

      例如:随着天气逐渐冷起来,牧草上的草不仅不长大,反而以固定的速度在减少,已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天,照此计算,可供多少头牛吃10天?

      解析:牛在吃草,草在匀速减少,所以是牛吃草问题中的相遇问题,原有草量=(牛每天吃掉的草+每天生长的草)×,设每头牛每天吃的草量为1,每天减少的草量为X,可供Y头牛吃10天,所以(20+X)5=(15+X)6=(Y+X)10,先求出X=10,再求出Y=5。

      推荐: